LinkedIn - Iinsight into the motivation and technical challenges of combining Scala, JRuby and Voldemort, at such scale.
Emerging web businesses to watch
Hibernate Querying 101 : tips and tricks
Showing posts with label Architectures. Show all posts
Showing posts with label Architectures. Show all posts
Tuesday, October 12, 2010
Articles - 10-12-2010
Labels:
Architectures,
Articles,
Hibernate,
Ruby,
Scala,
Voldemort,
Web Business
Tuesday, December 29, 2009
Highscalability.com - eBay Architecture
Update 2: EBay's Randy Shoup spills the secrets of how to service hundreds of millions of users and over two billion page views a day in Scalability Best Practices: Lessons from eBay on InfoQ. The practices: Partition by Function, Split Horizontally, Avoid Distributed Transactions, Decouple Functions Asynchronously, Move Processing To Asynchronous Flows, Virtualize At All Levels, Cache Appropriately.
Update: eBay Serves 5 Billion API Calls Each Month. Aren't we seeing more and more traffic driven by mashups composed on top of open APIs? APIs are no longer a bolt on, they are your application. Architecturally that argues for implementing your own application around the same APIs developers and users employ.
continue...
Update: eBay Serves 5 Billion API Calls Each Month. Aren't we seeing more and more traffic driven by mashups composed on top of open APIs? APIs are no longer a bolt on, they are your application. Architecturally that argues for implementing your own application around the same APIs developers and users employ.
continue...
Monday, December 28, 2009
Facebook Architecture
Facbook Engineering Notes
High Performance at Massive Scale – Lessons learned at Facebook
Jeff Rothschild, Vice President of Technology at Facebook gave a great presentation at UC San Diego on our favorite subject: "High Performance at Massive Scale – Lessons learned at Facebook". The abstract for the talk is:
continue...
Facebook's Memcached Multiget Hole: More machines != More Capacity
When you are on the bleeding edge of scale like Facebook is, you run into some interesting problems. As of 2008 Facebook had over 800 memcached servers supplying over 28 terabytes of cache. With those staggering numbers it's a fair bet to think they've seen their share of Dr. House worthy memcached problems.
continue...
Why are Facebook, Digg, and Twitter so hard to scale?
Real-time social graphs (connectivity between people, places, and things). That's why scaling Facebook is hard says Jeff Rothschild, Vice President of Technology at Facebook. Social networking sites like Facebook, Digg, and Twitter are simply harder than traditional websites to scale. Why is that? Why would social networking sites be any more difficult to scale than traditional web sites? Let's find out.
continue...
Product: Facebook's Cassandra - A Massive Distributed Store
Update 2: Presentation from the NoSQL conference: slides, video.
Update: Why you won't be building your killer app on a distributed hash table by Jonathan Ellis. Why I think Cassandra is the most promising of the open-source distributed databases --you get a relatively rich data model and a distribution model that supports efficient range queries. These are not things that can be grafted on top of a simpler DHT foundation, so Cassandra will be useful for a wider variety of applications.
continue...
Hive - A Petabyte Scale Data Warehouse using Hadoop
This post about using Hive and Hadoop for analytics comes straight from Facebook engineers.
Scalable analysis on large data sets has been core to the functions of a number of teams at Facebook - both engineering and non-engineering. Apart from ad hoc analysis and business intelligence applications used by analysts across the company, a number of Facebook products are also based on analytics.
continue...
Facebook, Hadoop, and Hive
Facebook has the second largest installation of Hadoop (a software platform that lets one easily write and run applications that process vast amounts of data), Yahoo being the first.
continue...
Strategy: Facebook Tweaks to Handle 6 Time as Many Memcached Requests
Our latest strategy is taken from a great post by Paul Saab of Facebook, detailing how with changes Facebook has made to memcached they have:
continue...
Product: Scribe - Facebook's Scalable Logging System
In Log Everything All the Time I advocate applications shouldn't bother logging at all. Why waste all that time and code? No, wait, that's not right. I preach logging everything all the time. Doh. Facebook obviously feels similarly which is why they opened sourced Scribe, their internal logging system, capable of logging 10s of billions of messages per day. These messages include access logs, performance statistics, actions that went to News Feed, and many others.
continue...
Some Facebook Secrets to Better Operations
Kim Nash in an interview with Jonathan Heiliger, Facebook VP of technical operations, provides some juicy details on how Facebook handles operations. Operations is one of those departments everyone runs differently as it is usually an ontogeny recapitulates phylogeny situation. With 2,000 databases, 25 terabytes of cache, 90 million active users, and 10,000 servers you know Facebook has some serious operational issues. What are some of Facebook's secrets to better operations?
continue...
High Performance at Massive Scale – Lessons learned at Facebook
Jeff Rothschild, Vice President of Technology at Facebook gave a great presentation at UC San Diego on our favorite subject: "High Performance at Massive Scale – Lessons learned at Facebook". The abstract for the talk is:
continue...
Facebook's Memcached Multiget Hole: More machines != More Capacity
When you are on the bleeding edge of scale like Facebook is, you run into some interesting problems. As of 2008 Facebook had over 800 memcached servers supplying over 28 terabytes of cache. With those staggering numbers it's a fair bet to think they've seen their share of Dr. House worthy memcached problems.
continue...
Why are Facebook, Digg, and Twitter so hard to scale?
Real-time social graphs (connectivity between people, places, and things). That's why scaling Facebook is hard says Jeff Rothschild, Vice President of Technology at Facebook. Social networking sites like Facebook, Digg, and Twitter are simply harder than traditional websites to scale. Why is that? Why would social networking sites be any more difficult to scale than traditional web sites? Let's find out.
continue...
Product: Facebook's Cassandra - A Massive Distributed Store
Update 2: Presentation from the NoSQL conference: slides, video.
Update: Why you won't be building your killer app on a distributed hash table by Jonathan Ellis. Why I think Cassandra is the most promising of the open-source distributed databases --you get a relatively rich data model and a distribution model that supports efficient range queries. These are not things that can be grafted on top of a simpler DHT foundation, so Cassandra will be useful for a wider variety of applications.
continue...
Hive - A Petabyte Scale Data Warehouse using Hadoop
This post about using Hive and Hadoop for analytics comes straight from Facebook engineers.
Scalable analysis on large data sets has been core to the functions of a number of teams at Facebook - both engineering and non-engineering. Apart from ad hoc analysis and business intelligence applications used by analysts across the company, a number of Facebook products are also based on analytics.
continue...
Facebook, Hadoop, and Hive
Facebook has the second largest installation of Hadoop (a software platform that lets one easily write and run applications that process vast amounts of data), Yahoo being the first.
continue...
Strategy: Facebook Tweaks to Handle 6 Time as Many Memcached Requests
Our latest strategy is taken from a great post by Paul Saab of Facebook, detailing how with changes Facebook has made to memcached they have:
continue...
Product: Scribe - Facebook's Scalable Logging System
In Log Everything All the Time I advocate applications shouldn't bother logging at all. Why waste all that time and code? No, wait, that's not right. I preach logging everything all the time. Doh. Facebook obviously feels similarly which is why they opened sourced Scribe, their internal logging system, capable of logging 10s of billions of messages per day. These messages include access logs, performance statistics, actions that went to News Feed, and many others.
continue...
Some Facebook Secrets to Better Operations
Kim Nash in an interview with Jonathan Heiliger, Facebook VP of technical operations, provides some juicy details on how Facebook handles operations. Operations is one of those departments everyone runs differently as it is usually an ontogeny recapitulates phylogeny situation. With 2,000 databases, 25 terabytes of cache, 90 million active users, and 10,000 servers you know Facebook has some serious operational issues. What are some of Facebook's secrets to better operations?
continue...
Highscalability.com - Stack Overflow Architecture
Update: Startup – ASP.NET MVC, Cloud Scale & Deployment shows an interesting alternative approach for a Windows stack using ServerPath/GoGrid for a dedicated database machine, elastic VMs for the front end, and a free load balancer.
Stack Overflow is a much loved programmer question and answer site written by two guys nobody has ever heard of before. Well, not exactly. The site was created by top programmer and blog stars Jeff Atwood and Joel Spolsky. In that sense Stack Overflow is like a celebrity owned restaurant, only it should be around for a while. Joel estimates 1/3 of all the programmers in the world have used the site so they must be serving up something good.
continue...
Stack Overflow is a much loved programmer question and answer site written by two guys nobody has ever heard of before. Well, not exactly. The site was created by top programmer and blog stars Jeff Atwood and Joel Spolsky. In that sense Stack Overflow is like a celebrity owned restaurant, only it should be around for a while. Joel estimates 1/3 of all the programmers in the world have used the site so they must be serving up something good.
continue...
Highscalability.com - Amazon Architecture
This is a wonderfully informative Amazon update based on Joachim Rohde's discovery of an interview with Amazon's CTO. You'll learn about how Amazon organizes their teams around services, the CAP theorem of building scalable systems, how they deploy software, and a lot more. Many new additions from the ACM Queue article have also been included.
Amazon grew from a tiny online bookstore to one of the largest stores on earth. They did it while pioneering new and interesting ways to rate, review, and recommend products. Greg Linden shared is version of Amazon's birth pangs in a series of blog articles
continue...
Asynchronous Architectures 4
Availability & Consistency
Amazon grew from a tiny online bookstore to one of the largest stores on earth. They did it while pioneering new and interesting ways to rate, review, and recommend products. Greg Linden shared is version of Amazon's birth pangs in a series of blog articles
continue...
Asynchronous Architectures 4
Availability & Consistency
Highscalability.com - Flickr Architecture
Update: Flickr hits 2 Billion photos served. That's a lot of hamburgers.
Flickr is both my favorite bird and the web's leading photo sharing site. Flickr has an amazing challenge, they must handle a vast sea of ever expanding new content, ever increasing legions of users, and a constant stream of new features, all while providing excellent performance. How do they do it?
continue...
Flickr is both my favorite bird and the web's leading photo sharing site. Flickr has an amazing challenge, they must handle a vast sea of ever expanding new content, ever increasing legions of users, and a constant stream of new features, all while providing excellent performance. How do they do it?
continue...
Highscalability.com - Scaling Twitter: Making Twitter 10000 Percent Faster
Update 6: Some interesting changes from Twitter's Evan Weaver: everything in RAM now, database is a backup; peaks at 300 tweets/second; every tweet followed by average 126 people; vector cache of tweet IDs; row cache; fragment cache; page cache; keep separate caches; GC makes Ruby optimization resistant so went with Scala; Thrift and HTTP are used internally; 100s internal requests for every external request; rewrote MQ but kept interface the same; 3 queues are used to load balance requests; extensive A/B testing for backwards capability; switched to C memcached client for speed; optimize critical path; faster to get the cached results from the network memory than recompute them locally.
Update 5: Twitter on Scala. A Conversation with Steve Jenson, Alex Payne, and Robey Pointer by Bill Venners. A fascinating discussion of why Twitter moved to the Java JVM for their server infrastructure (long lived processes) and why they moved to Scala to program against it (high level language, static typing, functional). Ruby is used on the front-end but wasn't performant or reliable enough for the back-end.
continue...
Update 5: Twitter on Scala. A Conversation with Steve Jenson, Alex Payne, and Robey Pointer by Bill Venners. A fascinating discussion of why Twitter moved to the Java JVM for their server infrastructure (long lived processes) and why they moved to Scala to program against it (high level language, static typing, functional). Ruby is used on the front-end but wasn't performant or reliable enough for the back-end.
continue...
Highscalability.com - Google Architecture
Update 2: Sorting 1 PB with MapReduce. PB is not peanut-butter-and-jelly misspelled. It's 1 petabyte or 1000 terabytes or 1,000,000 gigabytes. It took six hours and two minutes to sort 1PB (10 trillion 100-byte records) on 4,000 computers and the results were replicated thrice on 48,000 disks.
Update: Greg Linden points to a new Google article MapReduce: simplified data processing on large clusters. Some interesting stats: 100k MapReduce jobs are executed each day; more than 20 petabytes of data are processed per day; more than 10k MapReduce programs have been implemented; machines are dual processor with gigabit ethernet and 4-8 GB of memory.
continue...
Update: Greg Linden points to a new Google article MapReduce: simplified data processing on large clusters. Some interesting stats: 100k MapReduce jobs are executed each day; more than 20 petabytes of data are processed per day; more than 10k MapReduce programs have been implemented; machines are dual processor with gigabit ethernet and 4-8 GB of memory.
continue...
Highscalability.com - PlentyOfFish Architecture
Update 4: Jeff Atwood costs out Markus' scale up approach against a scale out approach and finds scale up wanting. The discussion in the comments is as interesting as the article. My guess is Markus doesn't want to rewrite his software to work across a scale out cluster so even if it's more expensive scale up works better for his needs.
Update 3: POF now has 200 million images and serves 10,000 images served per second. They'll be moving to a 250,000 IOPS RamSan to handle the load. Also upgraded to a core database machine with 512 GB of RAM, 32 CPU’s, SQLServer 2008 and Windows 2008.
continue...
Update 3: POF now has 200 million images and serves 10,000 images served per second. They'll be moving to a 250,000 IOPS RamSan to handle the load. Also upgraded to a core database machine with 512 GB of RAM, 32 CPU’s, SQLServer 2008 and Windows 2008.
continue...
Highscalability.com - YouTube Architecture
Update 2: YouTube Reaches One Billion Views Per Day. That’s at least 11,574 views per second, 694,444 views per minute, and 41,666,667 views per hour.
Update: YouTube: The Platform. YouTube adds a new rich set of APIs in order to become your video platform leader--all for free. Upload, edit, watch, search, and comment on video from your own site without visiting YouTube. Compose your site internally from APIs because you'll need to expose them later anyway.continue...
Asynchronous Architectures 4
This is the fourth in a series of posts presenting arguments for asynchronous architectures as the optimal way to build high-performance, scalable systems for a distributed environment.
In a QCon conference presentation on Availability and Consistency or how the CAP theorem ruins it all, Werner Vogels, Amazon CTO, examines the tension between availability & consistency in large-scale distributed systems, and presents a model for reasoning about the trade-offs between different solutions.
Asynchronous Architectures 3
This is the third in a series of posts presenting arguments for asynchronous architectures as the optimal way to build high-performance, scalable systems for a distributed environment.
continue...
continue...
Asynchronous Architectures 2
This post is the second in a series presenting arguments for asynchronous architectures as the optimal way to build high-performance, scalable systems for a distributed environment. The first post reviewed the general case for asynchronous communication among interdependent components or services, and highlighted Bell's Law of Waiting.
continue..
continue..
Asynchronous Architectures 1
In Five Scalability Principles, I reviewed an article published by MySQL about the five performance principles that apply to all application scaling efforts. When discussing the first principle -- Don't think synchronously -- I stated that Decoupled processes and multi-transaction workflows are the optimal starting point for the design of high-performance (distributed) systems.
continue...
continue...
Five Scalability Principles
The 12 Days of Scale-Out is a section of the MySQL site. It consists of a series of twelve articles, eleven of which are case studies describing large-scale MySQL implementations. But Day Six is a bit different -- it spells out five fundamental performance principles that apply to all application scaling efforts.
continue...
continue...
Brewer's CAP Theorem
On Friday 4th June 1976, in a small upstairs room away from the main concert auditorium, the Sex Pistols kicked off their first gig at Manchester's Lesser Free Trade Hall. There's some confusion as to who exactly was there in the audience that night, partly because there was another concert just six weeks later, but mostly because it's considered to be a gig that changed western music culture forever. So iconic and important has that appearance become that David Nolan wrote a book,
continue...
continue...
Subscribe to:
Posts (Atom)